From November 12 to 14, 2024, the KLC team participated in the highly anticipated FILTECH exhibition in Cologne, Germany. As an important event in the field of global filtration and separation technology, this exhibition attracted industry leaders, experts and innovation pioneers from all over the world to gather together to discuss the latest technological developments and market trends of filtration equipment.
During the three-day exhibition, KLC displayed the latest products and solutions in the field of filtration technology such as AC FFU, high temperature Separator Filter, and high frequency bag filters. The KLC booth attracted the attention of many visitors, and the attendees showed great interest in our innovative technologies.
FILTECH is a global event and platform that focuses on the filtration industry and adjacent sectors. It is the largest and most significant event of its kind worldwide, showcasing the latest technological advancements and innovations in the field of filtration and separation. FILTECH brings together experts, researchers, and industry professionals from various sectors to address pressing issues such as air pollution, climate impact, health hazards posed by germs, and optimizing efficiency in solid and liquid separation processes. From technologies for air filtration to solutions for solid and liquid separation, FILTECH offers tailored solutions to meet the diverse needs of industries across the board. It provides a platform to explore targeted solutions for all filtration challenges, driving progress and excellence in filtration and separation technologies.
The FILTECH exhibition provides us with an important platform to understand industry trends. By participating in multiple technical forums and seminars, we have obtained valuable information on the latest research results and development directions of filtration and separation technology. These insights will help KLC maintain a competitive advantage in future product development and market strategy.
Overall, KLC's experience of participating in the 2024 FILTECH exhibition was extremely successful. We not only demonstrated the company's technical strength, but also strengthened our connections with all parties in the industry. Thank you to all friends who visited our booth, and look forward to jointly promoting the development of filtration and separation technology in future cooperation. We look forward to seeing you again at the next exhibition and exploring more possibilities together!
SEMICON SEA, the annual event of the global semiconductor industry, has come to a successful conclusion at the Marina Bay Sands Convention and Exhibition Center in Singapore. As the largest and most influential semiconductor exhibition in Southeast Asia, it brings together semiconductor equipment, materials and service suppliers from all over the world. Here, practitioners in the semiconductor market of various countries have obtained the most complete face-to-face technical exchange and cooperation platform to jointly explore new concepts, new trends and development space in the industry, and also create an excellent opportunity for enterprises to explore and develop the Southeast Asian market.
KLC brought a full range of air purification system solutions and other series of air filters and clean room equipment to the SEMICON SEA exhibition stage, winning the favor of partners from all over the world.
The exhibition is scheduled, and cooperation is boundless. In the future, KLC will continue to use "technological innovation" as the engine, constantly polish, and strive to provide more efficient and sustainable air purification system solutions for global customers. KLC SEMICON SEA 2025 has come to a successful conclusion. Thank you to everyone who pays attention to KLC. We will continue to work hard to contribute more to the air purification of the semiconductor industry!
Air filters are filtration-based air purifiers. The HEPA filter we often hear about stands for High-efficiency Particulate Air Filter.
Let's break down the five core principles of air filtration to help you understand its underlying logic.
1. Interception Effect: The fibers in a filter are intricately arranged. When airborne dust particles come into contact with the surface of the filter fibers, they are directly trapped if the particle is close enough to the filter material. This phenomenon is particularly evident in dense filter materials, such as the three-dimensional mesh structure formed by ultra-fine fibers in meltblown fabric for masks, which can firmly lock viral aerosols within the fiber gaps.
2. Inertial Effect: The complex arrangement of filter fibers in an air filter causes airflow to encounter obstacles and deflect as it passes through the filter material. Dust particles in the air, under the influence of inertial forces, break away from the streamline and collide with the surface of the filter fibers, depositing there. The larger the particle, the greater the inertial force, the greater the likelihood of it being blocked by the filter fibers, and the better the filtration efficiency.
3. Diffusion Effect: The diffusion effect targets ultrafine particles smaller than 0.1 micrometers. Particles smaller than 0.1 micrometers primarily undergo Brownian motion, exhibiting a disordered trajectory, significantly increasing the probability of contact with filter fibers; the smaller the particle, the easier it is to remove.
4. Gravity Effect: When the airflow velocity is lower than the particle settling velocity, larger particles naturally settle under gravity. Flue gas treatment towers in thermal power plants expand the space and reduce the flow velocity, allowing dust to fall into the dust collection hopper like sand settling to the bottom of water. This mechanism is economical and efficient for treating high concentrations of dust, but its effect on suspended particles is limited, and it is usually used as a pretreatment method.
5. Electrostatic Effect: Electrostatic electret technology charges the fibers, giving the filter material the ability to actively capture particles with opposite charges, much like a magnet attracts iron filings. This mechanism is particularly effective for charged particles in PM2.5, and industrial dust removal equipment performs electret treatment on the filter surface.