Let's break down the five core principles of air filtration to help you understand its underlying logic.
1. Interception Effect: The fibers in a filter are intricately arranged. When airborne dust particles come into contact with the surface of the filter fibers, they are directly trapped if the particle is close enough to the filter material. This phenomenon is particularly evident in dense filter materials, such as the three-dimensional mesh structure formed by ultra-fine fibers in meltblown fabric for masks, which can firmly lock viral aerosols within the fiber gaps.
2. Inertial Effect: The complex arrangement of filter fibers in an air filter causes airflow to encounter obstacles and deflect as it passes through the filter material. Dust particles in the air, under the influence of inertial forces, break away from the streamline and collide with the surface of the filter fibers, depositing there. The larger the particle, the greater the inertial force, the greater the likelihood of it being blocked by the filter fibers, and the better the filtration efficiency.
3. Diffusion Effect: The diffusion effect targets ultrafine particles smaller than 0.1 micrometers. Particles smaller than 0.1 micrometers primarily undergo Brownian motion, exhibiting a disordered trajectory, significantly increasing the probability of contact with filter fibers; the smaller the particle, the easier it is to remove.
4. Gravity Effect: When the airflow velocity is lower than the particle settling velocity, larger particles naturally settle under gravity. Flue gas treatment towers in thermal power plants expand the space and reduce the flow velocity, allowing dust to fall into the dust collection hopper like sand settling to the bottom of water. This mechanism is economical and efficient for treating high concentrations of dust, but its effect on suspended particles is limited, and it is usually used as a pretreatment method.
5. Electrostatic Effect: Electrostatic electret technology charges the fibers, giving the filter material the ability to actively capture particles with opposite charges, much like a magnet attracts iron filings. This mechanism is particularly effective for charged particles in PM2.5, and industrial dust removal equipment performs electret treatment on the filter surface.