The production environment for semiconductor devices is extremely sensitive to the presence of contaminants. Even small amounts of gaseous or particulate contaminants can reduce product quality. Therefore, cleanliness requirements in semiconductor device manufacturing are far higher than in other industries.
Throughout the entire chip and semiconductor device manufacturing process, process environment contamination control is crucial. The air cleanliness of core processes needs to meet ISO Class 1 standards, with gaseous molecular contaminant (AMC) concentrations below one part per billion. Substandard process environments can lead to a significant reduction in product yield.
Ordinary air contains a large number of particulate contaminants such as microparticles and dust, as well as gaseous contaminants such as sulfur dioxide, nitrogen oxides, and ammoniaaa. Only after treatment can it enter a cleanroom. Because cleanrooms used for producing semiconductors and other microelectronic devices must maintain standard cleanliness levels 24/7, the cleanroom air conditioning system (including the exhaust system), its associated heat and cold sources, and corresponding delivery systems must operate 24 hours a day, which is significantly different from other conventional air conditioning systems.
As the power source, the fan consumes most of its energy due to the combined resistance of its components. Furthermore, the air filter's resistance accounts for approximately 50% of the fan's total head. Therefore, reducing the energy consumption of air conditioning filters is crucial for lowering building energy consumption and carbon emissions. From the perspective of improving energy efficiency and reducing energy consumption, optimizing air filter performance without compromising filtration requirements is essential.
Filter energy consumption is directly determined by average resistance and is related to initial resistance and dust holding capacity. Reducing initial resistance, increasing dust holding capacity, and minimizing the increase in resistance during dust holding are effective ways to reduce energy consumption, thus lowering energy costs for customers and contributing to environmental protection.
Air filters are filtration-based air purifiers. The HEPA filter we often hear about stands for High-efficiency Particulate Air Filter.
Let's break down the five core principles of air filtration to help you understand its underlying logic.
1. Interception Effect: The fibers in a filter are intricately arranged. When airborne dust particles come into contact with the surface of the filter fibers, they are directly trapped if the particle is close enough to the filter material. This phenomenon is particularly evident in dense filter materials, such as the three-dimensional mesh structure formed by ultra-fine fibers in meltblown fabric for masks, which can firmly lock viral aerosols within the fiber gaps.
2. Inertial Effect: The complex arrangement of filter fibers in an air filter causes airflow to encounter obstacles and deflect as it passes through the filter material. Dust particles in the air, under the influence of inertial forces, break away from the streamline and collide with the surface of the filter fibers, depositing there. The larger the particle, the greater the inertial force, the greater the likelihood of it being blocked by the filter fibers, and the better the filtration efficiency.
3. Diffusion Effect: The diffusion effect targets ultrafine particles smaller than 0.1 micrometers. Particles smaller than 0.1 micrometers primarily undergo Brownian motion, exhibiting a disordered trajectory, significantly increasing the probability of contact with filter fibers; the smaller the particle, the easier it is to remove.
4. Gravity Effect: When the airflow velocity is lower than the particle settling velocity, larger particles naturally settle under gravity. Flue gas treatment towers in thermal power plants expand the space and reduce the flow velocity, allowing dust to fall into the dust collection hopper like sand settling to the bottom of water. This mechanism is economical and efficient for treating high concentrations of dust, but its effect on suspended particles is limited, and it is usually used as a pretreatment method.
5. Electrostatic Effect: Electrostatic electret technology charges the fibers, giving the filter material the ability to actively capture particles with opposite charges, much like a magnet attracts iron filings. This mechanism is particularly effective for charged particles in PM2.5, and industrial dust removal equipment performs electret treatment on the filter surface.